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Abstract-Clustering is an unsupervised classification that aims 
to classify an image into homogeneous regions. We have 
proposed a hierarchical content based image clustering 
algorithm to automatically cluster the remote sensing satellite 
image. The performance evaluation of this algorithm is done 
with reference to the LISS 4 sensor imagery of IRS-P6 satellite. 
Centroid of the clusters is uniformly distributed throughout the 
image and optimizes both inter-cluster and intra-cluster 
similarity metrics. 
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                            I. Introduction 
The huge amount of data available in living world has to be 
systematically organized so as to make the system able to 
interpret the information in a proper way. Classification in 
the context of image processing serves the purpose by 
categorizing the required information and avoiding unwanted 
information plays a vital role in human development [1]. 
Classification is broadly categorized as supervised and 
unsupervised classification among which the unsupervised 
approach is being discussed in this paper. The unsupervised 
classification approach investigated in this research work is 
called clustering, where no labeled data are available [2]. 
Clustering is the process of classifying the information into 
various groups where each group represents a cluster. The 
objective of clustering is to maximize intra-cluster similarity 
and minimize inter-cluster similarity [3] measures. Intra-
cluster similarity denotes the closeness between the elements 
of a cluster and inter-cluster similarity denotes the similarity 
between all the clusters present in the image. 
Cluster analysis tools are commonly used in diverse fields 
like Engineering( artificial intelligence, mechanical 
engineering, electrical engineering ),  communication( 
mobile ad-hoc network , sensor tracking ), medical 
science(biology, microbiology, genetics, pathology , 
paleontology , psychiatry), social science( sociology , 
archeology ,  psychology, education ), economics(business, 
marketing ) , remote sensing and GIS [4][5]. Clustering 
algorithms are developed according to specific problems and 
it increases the probability of solving that problem. 
Clustering is broadly classified into following types, as  
Partition clustering, Hierarchical clustering, Grid- based 
clustering,  Density based clustering and Model based 
clustering [6].  Partition clustering divides the whole data set 
N elements into K non-empty clusters where K ≤ N. In 
hierarchical clustering either larger clusters are divided into 
smaller ones or smaller clusters are merged to larger ones. 
Density-based clustering adopts the splitting of elements 
based on their density by which high density regions are 

distinguished from low density ones. Grid based clustering 
holds both data and space around the data points where as in 
model based clustering some mathematical model enhance 
the relationship between the data. 
In this paper we propose a hierarchical clustering algorithm 
where the data elements are partitioned at each level of 
hierarchical division We first consider the data set as a single 
cluster and moves down to divide the cluster into sub-clusters 
for analyzing the contribution of each data point towards 
newly formed centroids   K-means [7, 8] algorithm considers 
only the intra-cluster similarity while our approach considers 
both intra-cluster and inter-cluster similarities. 
Remaining sections is organized as follows. The next section 
discusses the related work and the notation used and section 
III outlined the proposed algorithm. Experimental results and 
comparison with k-means algorithm are analyzed in section 
IV. We conclude in section V by summarizing the 
investigation results and suggesting future works.  
 
                        II. Related Work 
Hierarchical clustering classified into agglomerative and 
divisive [9] where in former the number of clusters goes on 
decreasing. Divisive approach increases the number of 
clusters at each step by splitting them according to their inter-
cluster dispersion. The divisive approach is adopted in the 
proposed work. 
Partition clustering divides the elements into clusters based 
on specific criteria [5]. Brute force method is 
computationally expensive for complete enumeration of data 
elements of an image. Thus heuristic approach is adopted to 
reduce the complexity and sum of the squared error is one of 
its most powerful criterion. Suppose we have N data 
elements, Xi  Є  I , i=1,2,...n which are divided into k clusters 
Cj, j=1,2,...k having individual cluster center at mj. The 
squared error criterion is given by 
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where d is the dimension of each point.         
K-means is the best known widely used [5] squared error 
algorithm. In this paper we use the   dispersion method [10] 
for calculation of error between cluster elements. For a 
cluster C having n data points with centroid at m, the intra-
cluster dispersion is shown as 

     Dispersion (Cj) =
ଵ
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The contribution [10] of individual points to a cluster is 
measured as the difference between the   dispersion 
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excluding that point and including that point in that cluster. 
The contribution is represented as 
Contribution ( Cj , Xi )= dispersion( Cj-[Xi] ) – dispersion(Cj) 
 
Any data point having negative contribution to its cluster 
should be shifted to a cluster where it has a better 
contribution preferably positive. At the same time even if the 
data point has positive contribution, we tried to move that 
point to any of the cluster where it gives maximum value. 
Dispersion of all points in a cluster with respect to its 
centroid is known as intra-cluster dispersion [10], represented 
as             

            A=
ଵ

௡
∑ ሺܺ݅ െ ݉ሻଶ௡

௜ୀଵ  

Dispersion between the clusters is known as inter-cluster 
dispersion [10] and is given as 

             B=
ଵ

௞
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                                III. Algorithm 
  The proposed methodology for hierarchical content based 
satellite image segmentation is as shown in figure 1. 

 
Fig1 : Automatic satellite Image Segmentation System 

 
The detailed algorithm of the above said methodology is as 
given. In the algorithm the input is the data points and the 
number of cluster k, to which we want to divide the data 
points.. 
1. Read the image as single cluster. 
2. Calculate the centroid m of the cluster. 
3. Set number of cluster, O=1  
4. While (O < k   ) repeat steps 5 to 11  
5. For P= 1 to O repeat steps 6 to 9 
6. Form a temporary cluster T1  to keep all the data points 
below the centroid value.   
7. Calculate the centroid of T1. 
8. Form a temporary cluster T2 to keep all other data points 
of that cluster. 
 9. Calculate the centroid of T2. 
10. Set O= 2*O 
11. interdatarmovement( clusters , centroid of the cluster) 
12. End 
The interdatamovement function is used for inter cluster 
transfer of data points and the mechanism is as given  
interdatamovement( all cluster , centroid of cluster ) 
     for each cluster Cj 
         for each data point X present in the cluster 

              if contribution( Cj , X ) < 0 
                     move the data point to that cluster Cnew where 
contribution (Cnew,X) is    maximum.                                
                   Update the cluster Cnew and centroid of Cnew. 
             Else 
 
                  move that data point to a cluster Cnew where  ( 
A-Anew ) / A +  (Bnew-B)/Bnew is    maximum. Update the 
cluster Cnew and centroid of Cnew. 
             
            end if 
        end for 
    end for 
The time complexity of interdatamovement function is 
O(kdN), where N is the total number of data points in the 
image and k is the number of clusters into which the image is 
segmented and d is the dimension of each point. The time 
complexity of our algorithm is O(ln k(Nkd)+2 (lnk)2 (N+d)) 
and O(N+k) space complexity. The complexity nears to 
linear as the number of data points, N is very large compared 
to k and d [5]. 
We can triple the number of cluster at each iteration by 
taking a suitable variable var, and dividing the cluster into 
three parts. The extend of the new clusters will be from 
clusters lower bound to m-var/2 , m-var/2 to m+var/2 , 
m+var/2  to upper bound respectively. The proposed 
approach also adopts mixing of both double and triple cluster 
formation technique.             
                        
               IV.  Experimental Results 
The performance evaluation of above algorithm is carried out 
with the satellite imagery of the Bhopal city. In our 
experiment we divide the satellite image of Bhopal city into 2 
clusters in the first iteration and each cluster to three new 
clusters in the second iteration. 

 
Fig.2 Satellite image of Bhopal city 

 
Fig.3 Clustered image 
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